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lnAs1 . .Sbx ALLOYS WITH NATIVE LATTICE PARAMETERS 
GROWN ON COMPOSITIONALLY GRADED BUFFERS: 

STRUCTURAL AND OPTICAL PROPERTIES 

D. WANG, D. DONETSKY, Y. LIN, G. KIPSHIDZE, L SHTERENGAS and G. BELENKY. 

Department of ECE, Stony Brook University, Stony Brook, New York I / 794 
• garik@ece.sunysb.edu 

W. L SARNEY and S. P. SVENSSON 

U.S. Anny Research Laboratory, 2800 Powder Mill Rd, Adelphi, Maryland 20783 

GalnSb and AIGalnSb compositionally graded buffer layers grown on GaSb by MBE were used to 
develop unrelaxed InAs 1.,Sb, epitaxial alloys with strain-free native lattice constants up to 2.1% 
larger than that of GaSb. The in-plane lattice constant of the strained top buffer layer was grown to 
be equal to the native, unstrained lattice constant of lnAs 1.,Sb, with given x. The InAso.56Sb 

0.44 layers demonstraled a photoluminescence (PL) peak at 9.4 Jim at T = 150 K. The minority carrier 
lifetime measured at 77 K for lnASo.8Sbo.2 was 250 ns. 

Keywords: InAsSb; compositionally graded buffer; MBE; infrared, minority carrier lifetime; 
reciprocal space mapping. 

Introduction 

GaSb based Ill-Y materials are widely used in the development of mid- and long-wave 
infrared optoelectronic devices because of the narrow bandgap and the flexibility in 
forming heterojunctions with various types of band offsets, i.e. type I, type II staggered 
or type II broken gap. For device applications, heterostructures with a considerable 
thickness are preferably grown lattice-matched or nearly lattice-matched to the substrate. 
Therefore, the device design is restricted by the lattice parameters of commercially 
available III-V substrates. For example, in the case of GaSb based type I lasers, the 
content of As in InGaAsSb quantum wells must be high enough to satisfy the conditions 
of pseudomorphic growth, but high As content in quantum wells severely affects the 
device performance [I]. In principle, the problem can be addressed by the epitaxial 
growth of lattice-mismatched materials of the desired lattice parameters. 

The key issue in mismatched epitaxy is to minimize the dislocations that penetrate 
through the epi-structures. In this work, we expand the lattice parameter of the GaSb 
substrate by growing linearly compositionally graded Ga(Al)InSb buffers, following the 
approach in [2-3]. The graded strain in the buffer layers facilitates the glide of threading 
dislocations and reduces the densities of dislocations that propagate through the buffer 
layer into the device [2]. High quality InAs1.xSbx layers having non-tetragonally 
distorted, strain-free lattice parameters were grown on top of the buffer layers with 
thickness up to 1.5 ,urn. 

33 



34 D. Wang eta/. 

InAs1.xSbx alloys are of special interest, because the bowing effect in the band gap Eg 
is dependent on the Sb composition, which allows the growth of layers having bandgaps 
narrower than that in lnSb [4-15]. In the second part of the paper, we present the optical 
properties of non-distorted InAs 1.xSbx alloys grown on linearly compositionally graded 
Ga(Al)InSb buffers. Strong PL was observed for InAs1.xSbx alloys in a wide temperature 
range. A relatively long carrier lifetime was obtained in lnASo.8Sb0.2 alloys from the PL 
response to modulated optical excitation. 

Growth and Structural Characterization 

The heterostructures were grown on GaSb substrates by solid-source molecular 
beam epitaxy using a Veeco GEN-930 system equipped with As and Sb valved cracker 
sources. Molecular beam fluxes were measured by an ion gauge positioned in the beam 
path. The substrate temperature was controlled by a pyrometer, which was calibrated 
using references such as the III to V enriched surface reconstruction transition, oxide 
desorption and the melting point of InSb. The compositionally graded 2-3.5 Jim thick 
Ga(AI)InSb buffer layers were grown at temperatures ranging from 460 to 520"C. The 
growth temperature was maintained near 415°C for the InAsSb layers. The Sb 
incorporation was controlled by the adjustment of the relative pressure of the As and Sb 
group V elements as measured by the beam-flux-monitor. The growth rate was about 
1 Jim per hour. InAs1.xSbx layers with x = 20, 30 and 44% were grown on GalnSb and 
AIGalnSb buffers. 

The defect distribution in linearly compositionally graded GalnSb and AlGalnSb 
buffers were characterized by cross-sectional TEM images. Figure 1 shows the XTEM 
images of structures with either laser or absorber layers grown on top of three different 
linearly graded buffer layerss;including (a) GalnSb with top In content of 16%; 
(b) GainSb with top In content of 30%; (c) AlGalnSb with top Al, Ga and In contents of 
75, 0 and 25 %, respectively. The images were taken with a (220) bright field two-beam 
condition to emphasize the dislocations. In all three structures, the misfit dislocation 
network was confined in the bottom part ( -1.5 Jim) of the graded buffers; the topmost 
portion of the buffers as well as the epi-structures grown onto the buffers is free from 
misfit dislocations. TEM results did not show any noticeable difference in the dislocation 
morphology of these two buffer layers or in the laser or absorber layer structures grown 
on top of them, both appear to be equally efficient in accommodating the misfit strain. 
From the images, we can estimate that the threading dislocation density is below 107 cm·2 

in the InAs1.xSbx layers. 
The surface morphology was characterized by atomic force microscopy (AFM) in 

tapping mode (AFM Dimension V). Cross-hatched patterns with crossing lines along the 
[ 110} crystallographic directions were observed on all structures. However, structures 
grown on AIGalnSb buffers showed better surface morphology. Figure 2 (a) and (b) 
show the AFM amplitude images measured over a 50 by 50 Jim area for samples 
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Fig. I. Cross-sectional TEM images of samples with 2 pm thick linearly graded buffers gcown on GaSb 
substrares: (a) GalnSb with top In content of 16% - mismatch accomodated 0.9%; (b) GainSb with top In 
content of 30%- mismatch accomodated 1.4%; (c) AIGalnSb with top AI, Ga and In contents of 75, 0 and 
25%- mismatch accomodated 1.4%. 

(a) (b) 

Fig. 2. AFM amplitude images measured over SO by SO pm area for samples with InAso.8Sb02 layer gcown on 
(a) GalnSb buffer and (b) AIGalnSb buffer; (c) shows the enlarged image (3 by 3 pm) of sample (b) . 

with InASo 8Sb02 layer grown on a (a) GalnSb buffer and a (b) AIGalnSb buffer. The 
undulation amplitude and period in sample (a) were about 10 nm and 9 f.Jm, respectively, 
both nearly twice as much the - 5nm and - 5 JJm measured for sample (b) . Figure 2 (c) 
shows the image of sample (b) measured over 3 by 3 JJm area; the root mean square 
surface roughness, i.e., in between of the dips in cross-hatch pattern, was below 1 nm. 
Increasing the Sb content led to larger peak-to-peak variations in the cross-hatch pattern, 
as indicated by surface roughness up to 10 nm for the InASo.56Sb0.44 samples. 

Strain relaxation of the structures was examined using high-resolution X-ray 
diffraction reciprocal-space mapping (RSM) at the symmetric (004) and asymmetric 
(335) Bragg reflections. Figure 3 presents a set of RSM measurements for a structure 
consisting of a 1 JJm lnASo 8Sb0.2 layer grown on a 2 JJm linearly compositionally graded 
AIGalnSb buffer layer. The native lattice constant of the InASo_8Sb0.2 layers is about 0.8% 
larger than that of GaSb. The native lattice constant of the buffer layer changed from that 
of GaSb to that of Alo.75Gao 13Ino.12Sb with a strain ramp rate about 0.6% per JJm. The 
topmost section of the graded buffer with Alo 75Gao_13Ino. 12Sb composition had a native 
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Fig. 3. (a) Symmetric (004) RSM taken at the azimuth angle emphasizing the tilt in the epi-layers; (b) (004) 
RSM taken at the azimuth angle minimizing the tilt in the epi-layers; (c) dependence of the measured tilt angle 
as a function of the azimuth angle; (d) asymmetric (335) RSM taken at azimuth angle equal to 90". Solid line 
denotes the location of 335 reflexes corresponding to fully relaxed material with lattice parameter gradually 
increasing from that of GaSb. Dashed line denotes the location of 335 reflexes of the material with further 
increasing native lattice parameter but grown pseudomorphically to the top of fully relaxed section. 

lattice constant about 1.3% larger than that of GaSb, but due to compressive strain, the 
in-plane lattice constant is equal to the native constant of the bulk InASo_8Sb0.2. When the 
final structure was grown, the InAsSb layer was sandwiched between Al0.75Gao.

13
Ino. 12Sb 

carrier confinement layers to assist photoluminescence experiments. 

The symmetric reflection revealed the tilt present in the epi-structure. Figure 3 (a) 
and (b) shows the RSMs obtained near the symmetric (004) reflection at two azimuth 
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determined from the horizontal peak separation between the GaSb substrate and the epi
layers. As shown in Figure 3 (a), the tilt angle increases as the thickness increases in the 
bottom part of the graded buffer, and stops increasing in the consequent layers. The 
bottom part of the buffer layers is near completely relaxed, as will be shown later, 
suggesting that tilting is associated with the process of strain relaxation. Figure 3 (c) plots 
the projected tilt angle as a function of several azimuth angle <p. We estimate the tilt angle 
to be 0.2° in the direction about 10" away from the [110} direction (<p = 90"). 

Asymmetric (335) RSM reflexes were measured at four different azimuth angles in 
order to characterize the degree of relaxation of the graded buffer layer and to confirm 
that the InA5o_8Sb0.2layer is lattice-matched to the topmost part of the graded buffer. 
Figure 3 (d) shows one of the (335) RSMs measured at an azimuth angle equal to 90", 
i.e., with the minimum tilting effect. The shift visible in the (335) RSM corresponds to 
the transition from the strain relaxed to the pseudomorphic section of the graded buffer. 
For illustrative purposes, the solid line corresponds to a 100% relaxed square lattice. The 
observed relaxation is close to 100%. After the tilt angle is accounted for, the degree of 
relaxed in this section of the graded buffer can be estimated as 95%, i.e., nearly 100%, 
and within our experimental error. The pseudomorphic growth of the dislocation-free 
topmost section of the buffer layer is apparent from the (335) scan since the reflex from 
the buffer layer is nearly vertical (dashed line in Figure 3 (d)). The reflection from the 
lnASo_8Sb0_2 layer is located at the turning point and on the same vertical line as the 
pseudomorphic section of the buffer, which confirms lattice matching to the in-plane 
lattice constant of the graded buffer layer. The amount of strain in the InASo_8Sb0_2 layer is 
below 0.1 %; therefore, no strain relaxation is expected. The reflection located above the 
InAsSb reflection in both the (004) and (335) RSM corresponds to a pseudomorphically 
strained auxiliary AlGaSb layer ( -150 nm) that was grown on top of the InAsSb layer for 
calibration purposes. 

Optical Characterization 

The PL and absorption spectra were measured with a Fourier-transform infrared (FTIR) 
spectrometer equipped with a liquid-nitrogen cooled HgCdTe detector with a cut-off 
wavelength of 12 f.Jm. The PL was excited by either a 970 nm laser diode or a Nd: Y AG 
laser and collected by reflective optics. PL was observed from all structures in a wide 
temperature range, up to room temperature from samples with 20% Sb. Figure 4 (a) 
shows the PL spectra from 1-f.Jm thick InASo_8Sb0_2 layer grown on an AlGalnSb buffer at 
13, 150 and 300 K. Figure 4 (b) presents the PL spectra measured from a l-f.lm thick 
lnAso.56Sb0_44 layer grown on an AlGalnSb buffer and a 1.8-f.Jm thick long-wave 
lnAs/GaSb superlattice grown on a GaSb substrate. The superlattice structure consists of 
300 periods of lnAs and GaSb layers with the cell period of 63 A enclosed within 20-nm 
AlAsSb carrier confinement layers lattice-matched to GaSb. The spectral widths (full
width at half maximum) for the three samples were similar, about II meV. The PL 
intensities from both InA5o_56Sb044 and superlattices were comparable at 13 K while 
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Fig. 4. (a) PL spectra from lnAso.sSbo.2 sample grown on AIGalnSb buffer at 13 K, 150 K and 300 K under an 
excitation power of 0.5W. (b) PL spectra from InAso.so.Sbo.44 layer grown on AIGalnSb buffer and long-wave 
lnAs/GaSb superlattices grown on GaSb substrate at 13 K under an excitation of 0.1 W. The PL was excitation 
by a Nd: Y AG laser with a beam diametc: of about 0.5 mm. 

intensities drops much faster in InAsSb sample at elevated temperatures. Considering the 
challenge of creating adequate hole confinement in the As-rich alloys, the faster drop of 
the PL intensity with temperature can be explained by the increased diffusion of the 
excess carriers out of the InAsSb layer. 

The absorption spectra were measured for the InAsSb layers with Sb compositions 
of 20% and 30% grown on GalnSb buffers. The absorbance was determined from 
transmission measurements taking into account the multiple reflections. The absorption 
spectrum was derived by subtracting the absorbance of the heterostructure with the 
epi-layers and the substrate. The transmission of the substrate was determined using the 
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same sample after the epi-layers were removed by polishing. The substrate of the sample 
with 20% Sb was thinned to 300 J..lm. The substrate of the heterostructure with 30% Sb 
was lapped down to near 50 llm thickness because of high free carrier absorption in the 
GaSb at longer wavelengths. The latter was determined to be 140 em·' near A.= 8 pm for 
the GaSb substrates with Te doping level of 3xl018 cm·3

• The sample with the measured 

thickness of 55 J..lm had near 50% transmission at this wavelength, as compared to a 2% 
transmission for the 300 J..lffi-thick substrate. The free carrier absorption in the thin 
substrate was determined by a fit based on the absorption measurements for the thicker 
substrate. Both absorption and PL spectra measured for the two samples at 150 K are 
presented in Figure 5. The PL peak energy matched the absorption edge indicating that 
the PL was associated with the band-to-band recombination. 
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Fig. 5. Absorption and PL spectra measured at 150 K for (a) InAso.sSbo 2 and (b) InAso1Sbo J. The PL was 
excited by a 970-nm laser diode at a power of 400 mW; the excitation area was 2.5 x 10·3 cm2 The distortion 
near 0.29 eV was caused by C02 absorption. 
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The energy positions of PL maxima at T = 13 K versus Sb composition x in the 
lnAsSb layers are presented in Figure 6. The positions of PL maxima were used to 
determine the bandgaps and the bowing parameter, which was about 0.9 eV, considerably 
greater than the recommended value of 0.7 eV [15]. The lower value of bowing reported 
previously was based on measurements in materials grown without control of the strain 
relaxation. The observed difference in the bowing between the 0.9 eV determined in this 
work and the 0.7 eV reported in literature can be explained by the absence of residual 
strain in the lnAsSb epitaxial layers. 
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Fig. 6. Dependence of 13K PL maxima on composition X in InAs1-XSbX epitaxia11ayers: InAs epilayer grown 
on InAs substrate (triangle), InAsSb0.08 epilayer grown lattice matched to GaSb substrate (circle), InAs1-
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Carrier lifetime measurements for the 1-,um thick InAs0.8Sb0.2 layer grown on 
AlGalnSb buffer layer were performed at T = 77 K using optical modulation response 
technique [ 16]. To minimize the effects of carrier separation on the carrier lifetime 
in undoped InAsSb layers, the Al0.25Ga0.70In0.05Sb barriers were doped with Be to 
the level of l x 1017 cm-3• The dependence of the carrier lifetime on the excitation 
power is shown in Figure 7. Simulation of the band diagram showed that the minority 
holes remain confined under low excitation (inset of Figure 7 (b)). The carrier lifetime 
was determined from the PL response to a small signal modulation of excitation in 
the frequency domain. The PL response spectra in a range of continuous-wave 
excitation power are shown in Figure 7 (a). The carrier lifetime 1: corresponding to the 
cut-off frequency ( -3dB point) was obtained by fitting the response in the entire 
frequency range to the dependence PL., oc [I + (21tfx•2

)
2r' 12

. A 250 ns carrier lifetime 
under low excitation condition was measured. The excess carrier concentration was 
estimated to be in the range (2-4}xl015 cm-3 at the excitation power in the range of 
0.5-1 W/cm2
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Fig. 7. Carrier lifetime measurements at T= 77 K on a 1-pm-thick InAso.8Sbo2 layer grown on an AIGalnSb 
buffer on a GaSb substrate. The PL responses and fits are presented for continuous wave excitation power 
levels of 0.8, I, 1.4, 3 and 5 mW from bottom to top, respectively. The PL was excited at the wavelength of 
1.31 fJm, and the excitation area was 2xltr3 cm2 FWHM (left). The reciprocal carrier lifetime is plotted versus 
continuous-wave excitation power density (right). A schematic band diagram of the InAsSb heterostructure 
used for carrier lifetime measurements is shown in the inset. 
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Conclusion 

In summary, we conclude that growing compositionally graded buffers (Ga(Al)InSb on 
GaSb substrates) with a strained but unrelaxed top layer allows the fabrication of bulk 
InAs 1.xSb, layers (0.5-1.5 ,urn thick). These films have characteristics that are promising 
for the development of IR detectors operating within the spectral range from 5 to 12 ,urn. 
The critical element of the technology is the control of the in-plane lattice constant of the 
topmost section of the buffer. The in-plane lattice constant of this layer must be equal to 
the lattice constant of InAs1.,Sb, with given x. The unrelaxed InAs 1.,Sb, epitaxial layers 
grown on top of such buffers demonstrated photoluminescence in the spectral range from 
5.2 to 9.4 ,urn within the temperature range of 77-150 K. The carrier lifetime of 250 ns 
was obtained at T = 77 K for structure consisting InASQ.8Sb0 2 epi-layers. 
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